skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wonderling, Nichole"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nanocomposites consisting of nanoparticles of iron oxide (Fe3O4) and iron carbide (Fe3C) with a core-shell structure (Fe core, Fe3O4 and/or Fe3C shells) coated with additional graphite-like carbon layer dispersed in carbon matrix have been synthesized by solid-phase pyrolysis of iron-phthalocyanine (FePc) and iron-porphyrin (FePr) with a pyrolysis temperature of 900°C, and post-annealing conducted at temperatures ranging from 150°C to 550°C under controlled oxygen- and/or nitrogen-rich environments. A comprehensive analysis of the samples’ morphology, composition, structure, size, and magnetic characteristics was performed by utilizing scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-STEM) with elemental mapping, X-ray diffraction analysis (XRD), and magnetic measurements by utilizing vibrating sample magnetometry (VSM). The effect of the annealing process on magnetic performance and efficient control of the hysteresis loop and specific absorption rate (SAR) are discussed. 
    more » « less